高数求极限,通分化简那一步怎么过来的,为什么跟我化的不一样。第一张是原答案,后面那张是我化的
2个回答
展开全部
用等价无穷小,比较好
1/ln(1+x^2) - 1/(sinx)^2
=[(sinx)^2- ln(1+x^2)]/[ln(1+x^2).(sinx)^2]
x->0
sinx~ x- x^3/6
ln(1+x^2) ~ x^2 - x^4/2
分母 ~(x^2)(x^2)=x^4
分子 ~ [x^2 - (1/2)x(x^3/6)] - [x^2 -x^4/2] = (1/6)x^4
lim(x->0) [1/ln(1+x^2) - 1/(sinx)^2]
=lim(x->0) [(sinx)^2- ln(1+x^2)]/[ln(1+x^2).(sinx)^2]
=1/6
1/ln(1+x^2) - 1/(sinx)^2
=[(sinx)^2- ln(1+x^2)]/[ln(1+x^2).(sinx)^2]
x->0
sinx~ x- x^3/6
ln(1+x^2) ~ x^2 - x^4/2
分母 ~(x^2)(x^2)=x^4
分子 ~ [x^2 - (1/2)x(x^3/6)] - [x^2 -x^4/2] = (1/6)x^4
lim(x->0) [1/ln(1+x^2) - 1/(sinx)^2]
=lim(x->0) [(sinx)^2- ln(1+x^2)]/[ln(1+x^2).(sinx)^2]
=1/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询