求极限lim(x趋近于π/2)(sinx)^tanx 10
原式=lim(x->π/2)[(sinx)^tanx]=lim(x->π/2){e^[tanx*ln(sinx)]}=e^{lim(x->π/2)[tanx*ln(sin...
原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}之后该怎么做? 展开
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}之后该怎么做? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询