
线性代数 方阵的特征值与特征向量 求解过程
2个回答
展开全部
图片中的解答不对,矩阵A有误.
|A-λE|=
2-λ 1 0
1 2-λ 0
0 0 3-λ
=(3-λ)[(2-λ)^2-1]
=(1-λ)(3-λ)^2.
所以A的特征值为 1,3,3
(A-E)X=0 的基础解系为 a1=(1,-1,0)^T
所以A的属于特征值1的特征向量为 k1a1,k1≠0
(A-3E)X=0 的基础解系为 a2=(1,1,0)^T,a3=(0,0,1)^T
所以A的属于特征值3的特征向量为 k2a2+k3a3,k1,k2不全为0.
|A-λE|=
2-λ 1 0
1 2-λ 0
0 0 3-λ
=(3-λ)[(2-λ)^2-1]
=(1-λ)(3-λ)^2.
所以A的特征值为 1,3,3
(A-E)X=0 的基础解系为 a1=(1,-1,0)^T
所以A的属于特征值1的特征向量为 k1a1,k1≠0
(A-3E)X=0 的基础解系为 a2=(1,1,0)^T,a3=(0,0,1)^T
所以A的属于特征值3的特征向量为 k2a2+k3a3,k1,k2不全为0.

2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询