线性代数 方阵的特征值与特征向量 求解过程
2个回答
展开全部
图片中的解答不对,矩阵A有误.
|A-λE|=
2-λ 1 0
1 2-λ 0
0 0 3-λ
=(3-λ)[(2-λ)^2-1]
=(1-λ)(3-λ)^2.
所以A的特征值为 1,3,3
(A-E)X=0 的基础解系为 a1=(1,-1,0)^T
所以A的属于特征值1的特征向量为 k1a1,k1≠0
(A-3E)X=0 的基础解系为 a2=(1,1,0)^T,a3=(0,0,1)^T
所以A的属于特征值3的特征向量为 k2a2+k3a3,k1,k2不全为0.
|A-λE|=
2-λ 1 0
1 2-λ 0
0 0 3-λ
=(3-λ)[(2-λ)^2-1]
=(1-λ)(3-λ)^2.
所以A的特征值为 1,3,3
(A-E)X=0 的基础解系为 a1=(1,-1,0)^T
所以A的属于特征值1的特征向量为 k1a1,k1≠0
(A-3E)X=0 的基础解系为 a2=(1,1,0)^T,a3=(0,0,1)^T
所以A的属于特征值3的特征向量为 k2a2+k3a3,k1,k2不全为0.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询