在线性回归分析中,若检验的结果为不显著,可能原因是什么
1、残差均方大。包括测量误差大,模型外有显著因子,误差自相关,或者真实不显著项未并入残差均方中。
2、共线性。方差膨胀因子太大。
3、该因子取值范围或波动范围太小,导致效应小。
4、模型外因子与该因子存在交互作用,把因子效应抵消。
5、该自变量因子存在测量误差,或记录与实际不符。
6、未做残差诊断,违反稳定,正态,独立,等方差假设,或有异常值未处理。
7、数据太少或抽样量太小,偶然性导致的。
8、手动计算错误。
扩展资料:
线性回归分析注意事项:
在应用相关和回归分析时,一般分为定性分析和定量分析两个阶段,其中定性分析虽然并不复杂,但也及其重要。通过定性分析,我们来判明分析的变量之间是否存在相互依存关系,而后才能转入定量分析。需要指出的是,不能不加分析地,将两个变量凑合在一起进行定量分析,这样往往会得出虚假相关的结论。
利用拟合的数学表达式所取得的回归方程,均是在一定范围内的有限资料计算得到的。理论上来说,其有效性只适用于该范围内,不适用于该范围外,即只适用于内插推算,不宜用作外推预测。
说明这个变量与因变量本来就不相关。
线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
相关含义:
线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
以上内容参考:百度百科-线性回归