微分方程的来源
微分方程研究的来源:它的研究来源极广,历史久远。I.牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。
20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。从“求通解”到“求解定解问题” 数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。第一,能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。如果把求通解看作求微商及消去法的某一类逆运算,那么,也和熟知的逆运算一样,它是带试探性而没有一定的规则的,甚至有时是不可能的(J.刘维尔首先证明黎卡提方程不可能求出通解),何况这种通解也是随着其自由度的增多而增加其求解的难度的。第二,当人们要明确通解的意义的时候(在19世纪初叶分析奠基时期显然会考虑到此问题)就会碰到严重的含糊不清之处,达布在他的教学中经常提醒大家注意这些困难。这主要发生在偏微分方程的研究中。
第三,微分方程在物理学、力学中的重要应用,不在于求方程的任一解,而是求得满足某些补充条件的解。A.-L.柯西认为这是放弃“求通解”的最重要的和决定性的原因。这些补充条件即定解条件。求方程满足定解条件的解,称之为求解定解问题。
早期由于外弹道学的需要,以及40年代由于高速气动力学研究激波的需要,拟线性一阶双曲组的间断解的研究更得到了重大发展,苏联和美国学者作出了贡献。泛函分析和偏微分方程间的相互联系,相互促进发展,首先应归功于法、波、苏等国学者的努力。
中华人民共和国建立后,微分方程得到了重视和发展。培养了许多优秀的微分方程的工作者,在常微分方程稳定性、极限环、结构稳定性等方面做出了很多有水平的结果;在偏微分方程混合型刻画渗流问题的拟线性退缩抛物型、椭圆组和拟线性双曲组的间断解等方面做出了很多有水平的结果。