探索宇宙的宇宙知识
在外力的作用下,地球自转轴在空间并不保持固定的方向,而是不断发生变化。地轴的长期运动称为岁差,而其周期运动则称为章动。岁差和章动引起天极和春分点在天球上的运动,对恒星的位置有所影响。
公元前二世纪古希腊天文学家喜帕恰斯是岁差现象的最早发现者。公元四世纪,中国晋代天文学家虞喜根据对冬至日恒星的中天观测,独立地发现岁差并定出冬至点每50年后退一度。牛顿是第一个指出产生岁差的原因是太阳和月球对地球赤道隆起部分的吸引。在太阳和月球的引力作用下,地球自转轴绕着黄道面的垂直轴旋转,在空间绘出一个圆锥面,绕行一周约需26,000年。
在天球上天极绕黄极描绘出一个半径约为23.5°(黄赤交角)的小圆,即春分点每26,000年旋转一周。这种由太阳和月球引起的地轴的长期运动称为日月岁差。德国天文学家贝塞耳首次算出日月岁差为5,035.05(历元1755.0),今值为5, 029.0966(历元2000.0)。
英国天文学家不拉德雷在1748年分析了1727-1747年的恒星位置的观测资料后,发现了章动。月球轨道面(白道面)位置的变化是引起章动的主要原因。白道的升交点沿黄道向西运动,约18.6年绕行一周,因而月球对地球的引力作用也有同一周期的变化。在天球上表现为天极(真天极)在绕黄极运动的同时,还围绕其平均位置(平天极)作周期18.6年的运动。同样,太阳对地球的引力也具有周期性变化,并引起相应周期的章动。岁差和章动的共同影响使得真天极绕着黄极在天球上描绘出一条波状曲线。
除了太阳和月球的引力外,地球还受到太阳系内其他行星的吸引,从而引起黄道面位置的不断变化,这不仅使黄赤交角改变,还使春分点沿赤道产生一个微小的位移(其方向与日月岁差相反),春分点的这种位移称为行星岁差。行星岁差使春分点沿赤道每年东进约0.13. “丹霞地貌”在国外很少有人熟悉,即使有些专业背景的也往往是只闻其名而不得亲见。因为这种地形构造既独特又稀少,是近代在中国南方的一些地方发现并命名的。这类地貌往往以石峰、石柱、石塔、峰林、方山、城堡等地形表现出来,在阳光的照射下,像披上一层红色的轻纱,熠熠泛光,犹如“丹霞”而且最初对此地貌进行研究的地方就是广东的丹霞山,于是,地理学家们就给红色砂岩和砾岩这种独特的地形地貌起名为“丹霞地貌”。
这种地貌在北方地区非常少见,而且发育不完整,但河北省承德地区的丹霞地貌却很典型。承德一带的山地,岩石组成非常复杂,包括火山岩、砾岩、砂岩和泥岩等,由于火山岩、砾岩质地坚硬,而砂岩、泥岩质地松软,于是在漫长的地质年代中,日晒、雨淋、冰冻、风吹的种种风化和侵蚀,使得松软的岩层不断的被剥蚀崩塌,坚硬的岩石愈加显现,亭亭矗立起来,形成了千姿百态的丹霞地貌,也构成了承德周围的奇峰异石。
站在高处向四周望去,你会感觉这一带的山峦中,峰锐如刀削、石异如人塑、山形如龙蟒、石状如鸟兽,最为有名的景观有 10余处。从山城出发西行10余里到达滦河之滨有两座双塔山,两山拔地而起,上大下水,高30多米,像两个倒竖的古塔,遥遥相对,巍巍壮观;距离此山以东 3公里处,还有一座山,两端翘起,形似元宝,远远望去双塔对元宝,巧夺天工,情趣盎然。
丹霞地貌是一种典型的造型地貌,在山城东武烈河东岸有著名的“棒锤山”,逶迤的山脊上,一峰独矗,直刺青天,上宽下窄,体形浑圆类似一把倒插的捣衣棒锤,倚天而立临河傍水,好像专为神女洗衣服设置的;在“棒锤山”东半公里处有一个大石头,形似卧着的大青蛙,抬着头,张着嘴,呱呱欲鸣。棒锤山和哈蟆石,一立一伏,奇妙无比。离城不远的罗汉山,外形惟妙惟肖,此外还有僧帽山、天桥山、朝阳洞、月牙山、鸡冠山等等,都以其形状命名。 中国古代为了认识星辰和观测天象,把天上的恒星几个一组,每组合定一个名称,这样的恒星组合称为星官。各个星官所包含的星数多寡不等,少到一个,多到几十个,所占的天区范围也各不相同。在众多的星官中,有31个占有很重要的地位,这就是三垣二十八宿。在唐代,三垣二十八宿发展成为中国古代的星空划分体系,类似现代天文学中的星座。三垣紫微垣、太微垣、天市垣。紫微垣包括北天极附近的天区,大体相当于拱极星区;太微垣包括室女、后发、狮子等星座的一部分;天市垣包括蛇夫、武仙、巨蛇、天鹰等星座的一部分。
二十八宿又称为二十八星或二十八舍。最初是古人为比较日、月、金、木、水、火、土的运动而选择的二十八个星官,作为观测时的标记。“宿”的意思和黄道十二宫的“宫”类似,表示日月五星所在的位置。到了唐代,二十八宿成为二十八个天区的主体,这些天区仍以二十八宿的名称为名称,和三垣的情况不同,作为天区,二十八宿主要是为了区划星官的归属。二十八宿从角宿开始,自西向东排列,与日、月视运动的方向相同。东方七宿:角、亢、氐、房、心、尾、萁;北方七宿:斗、牛(牵牛)、女(须女)、虚、危、室(营室)、壁(东壁);西方七宿:奎、娄、胃、昴、毕、觜、参;南方七宿:井(东井)、鬼(舆鬼)、柳、星(七星)、张、翼、轸。此外还有贴近这些星官与它们关系密切的一些星官,如坟墓、离宫、附耳、伐、钺、积尸、右辖、左辖、长沙、神宫等,分别附属于房、危、室、毕、参、井、鬼、轸、尾等宿内,称为辅官或辅座。唐代的二十八宿包括辅官或辅座星在内总共有星183颗。
二十八宿按东北西南四个方位分作四组,每组七宿,分别与四种颜色、五种四组动物形象相匹配,叫做四象或四陆,对应关系如下:东方苍龙,青色;北方玄武,黑色;西方白虎,白色;南方朱雀,红色。
如果自然界的4种力量事实上是在几百万度以下表现为不同形式的一种力,
那么大爆炸时期温度极高密度极大的宇宙中,重力、强力、粒子和反粒子之间
就没有什么区别了。爱因斯坦的物质和时空理论是以更普通的水准点为基础,
因此无法解释宇宙初始时炙热的弹丸之地是如何膨胀成今天我们看到的景象的。
我们甚至不知道宇宙为什么充满了物质。根据当今物理学的看法,早期宇宙中
的能量应该产生了数量相当的物质和反物质,之后它们会互相湮灭。而某些神
秘但作用巨大的物理过程使天平倾向了物质,于是足够的物质产生了充满星球
的星系。
幸运的是,初期的宇宙还留下了一些线索。一个是宇宙微波本底辐射,这
是大爆炸的余辉。几十年来,不管天文学家从宇宙的哪个角度测量,这种微弱
的辐射都是一样的。天文学家相信,这种统一性说明,大爆炸是伴随着比光速
还快的时空膨胀开始的。
然而,更新的详细观察显示,宇宙本底辐射并不是完全统一的。太空的一
小片区域与另一片随机分布的区域有着微小的差别。是不是早期稠密的宇宙的
中随机的量子波动留下了这些特点呢?芝加哥大学天文学家物理系主任、提出
这十一个问题委员会的负责人迈克尔-特纳认为,宇宙的分割区域——被星系打
断的大片伸展的太空——可能是最初亚原子规模的宇宙量子波动被大面积放大
形成的。
这正是现在促使粒子物理学家和天文学家合作的无限大和无限小的结合,也
就是为什么这11个难题有望用同一种理论来解答。
银河系中存在黑暗物质?
科学家断定,
宇宙中的90%都是由黑暗物质组成的,然而,黑暗物质到底是什么,目前没有一个科学家回答得出来。天文学家推算为130亿—140亿年
新华社华盛顿4月24日电 (记者毛磊)天文学家们24日说,他们利用“哈勃”太空望远镜观测到了迄今所发现的银河系中最古老的白矮星,这为确定宇宙年龄提供了一种全新的途径。新推算出的宇宙年龄约为130亿至140亿年。
天文学家们在美国宇航局的新闻发布会上介绍说,这些古老白矮星是在位于天蝎星座、距地球7000光年的一个名为M4的球状星团中发现的。分析表明,这些白矮星的年龄约为120亿至130亿年。
白矮星是宇宙中早期恒星燃尽后的产物,它会随着年龄的增长而逐渐冷却,因而被视为测量宇宙年龄的理想“时钟”。天文学家们比喻说,借助白矮星来估算宇宙的年龄,就好似通过余烬去推测一团炭火是何时熄灭的,原理上比较简单。但问题是白矮星会由于不断冷却而越来越黯淡,这是实际观测中需要克服的困难。
在观测M4球状星团的过程中,“哈勃”太空望远镜的观测能力发挥到了极限。望远镜上的照相机在67天中累计用了8天的曝光时间,才拍摄下迄今最黯淡、温度最低的白矮星照片。这些白矮星光线极其微弱,亮度不及人的肉眼所能看到的最暗星体的10亿分之一。
新发现的白矮星前身是宇宙中的第一批恒星。“哈勃”太空望远镜早先的观测结果显示,宇宙中的首批恒星,最早可能是在诞生宇宙的“大爆炸”后不到10亿年间形成的。因此,将这10亿年考虑进去,结合最新的白矮星观测结果,推算出宇宙的年龄应该为130亿年至140亿年之间,这与早先的一些结果基本相符。
此前关于宇宙年龄的推断,主要基于对宇宙膨胀速率的测算。天文学家们指出,白矮星观测提供的是一种完全不同的独立手段,将有助于验证和核对用其他方法得出的结果。
宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辩,而是建立在天文观测和物理实验基础上的一门现代科学。
目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。
宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?
人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?
1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。
宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。
导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。
宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。
1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。
1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。
至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。
大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。
根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。
奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形态。
宇宙有多大?
“宇宙”一词,最早大概出自我国古代著名哲学家墨子(约公元前468-376)。他用“宇”来指东、西、南、北,四面八方的空间,用“宙”来指古往今来的时间,合在一起便是指天地万物,不管它是大是小,是远是近;是过去的,现在的,还是将来的;是认识到的,还是未认识到的……总之是一切的一切。从哲学的观点看。人们认为宇宙是无始无终,无边无际的。不过,对这个深奥的概念我们不打算做深入的探讨,还是留给哲学家们去研究。我们不妨把眼光缩小一些,讲一讲利用我们现有的科学技术所能了解和观测的宇宙,人们把它称为“我们的宇宙”或“总星系”。从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。这130亿光年的距离便是我们今天所知道的宇宙的范围。再说得明确一些,我们今天所知道的宇宙范围,或者说大小,是一个以地球为中心,以130亿光年的距离为半径的球形空间。当然,地球并不真的是什么宇宙的中心,宇宙也未必是一个球体,只是限于我们目前的观测能力,我们只能了解到这一程度。在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥在多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。人类所认识的宇宙有多大,宇宙蕴藏着所有的物质,其中包括人类已发现的能量和辐射,也包括人类所知道并相信存在于太空内的一切一切。宇宙中有数以亿计的天体,这些天体都是十分巧妙而有规律地相互组合的,大多数的星