已知ab=1/4,a、b∈(0,1),则1/(1-a)+2/(1-b)的最小值
1个回答
展开全部
通分,原式=[(1-b)+2(1-a)]/[(1-a)(1-b)]
=(3-2a-b)/(1-a-b+ab)
=1+(2-a-ab)/(1-a-b+ab)
=1+(7/4-a)/(5/4-a-1/4a)
=1+(7a-4a^2)/(5a-4a^2-1)
=2+(2a+1)/(5a-4a^2-1)
=2-(2a+1)/[(2a+1)^2-9(2a+1)/2+9/2]
=2-1/[(2a+1)+9/2(2a+1)-9/2]
>=2-1/(3√2-9/2)
=(12+4√2)/3
注意0<b<1=>1/4<a<1,此时[(2a+1)+9/2(2a+1)-9/2]恒为负值
当且仅当2a+1=3√2/2,即a=(3√2-2)/4时成立,此时b=(3√2+2)/14
=(3-2a-b)/(1-a-b+ab)
=1+(2-a-ab)/(1-a-b+ab)
=1+(7/4-a)/(5/4-a-1/4a)
=1+(7a-4a^2)/(5a-4a^2-1)
=2+(2a+1)/(5a-4a^2-1)
=2-(2a+1)/[(2a+1)^2-9(2a+1)/2+9/2]
=2-1/[(2a+1)+9/2(2a+1)-9/2]
>=2-1/(3√2-9/2)
=(12+4√2)/3
注意0<b<1=>1/4<a<1,此时[(2a+1)+9/2(2a+1)-9/2]恒为负值
当且仅当2a+1=3√2/2,即a=(3√2-2)/4时成立,此时b=(3√2+2)/14
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询