求x^2+y^2的二重积分,积分区域为x^4+y^4<=1

 我来答
百度网友436b8c6
2016-05-19 · TA获得超过3821个赞
知道大有可为答主
回答量:4165
采纳率:0%
帮助的人:682万
展开全部
这种题型要利用积分区域的对称性和被积函数的奇偶性来解决.
1、被积函数可以看成根号下(x^2+y^2)和y两个函数,前者利用极坐标解决,后者由于y是奇函数,而积分区域为x^2+y^2=4和(x+1)^2+y^2=1所围成关于x轴对称,故二重积分y=0.
对于前者的积分可以分开在两个区域(x^2+y^2=4和(x+1)^2+y^2=1)里积分,然后做差即可.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式