等比数列和等差数列各项相乘求和
等比数列和等差数列各项相乘求和a1=qa2=q^2*2a3=q^3*3......................aN=q^N×N求前N项的和...
等比数列和等差数列各项相乘求和
a1=q
a2=q^2*2
a3=q^3*3
......................
aN=q^N×N
求前N项的和 展开
a1=q
a2=q^2*2
a3=q^3*3
......................
aN=q^N×N
求前N项的和 展开
5个回答
展开全部
解:Sn=q*1+q^2*2+q3^3*3+...q^n*n
=(q*1+q^2*1+q^3*1+...+q^n*1)
+(q^2*1+q^3*1+q^4*1+...q^n*1)
+(q^3*1+q^4*1+q^5*1+...q^n*1)
+q^n*1
=q(1-q^n)/(1-q)+q^2(1-q^(n-1))+Q^3(1-q^(n-2))/(1-q)+...+
+q^n(1-q)/(1-q)
=(q+q^2+q^3+...+q^n)/(1-q)-nq^(n+1)/(1-q)
=[q(q^(n+1)+1)-q^(n+1)(n+1)](1-q)^2
=(q*1+q^2*1+q^3*1+...+q^n*1)
+(q^2*1+q^3*1+q^4*1+...q^n*1)
+(q^3*1+q^4*1+q^5*1+...q^n*1)
+q^n*1
=q(1-q^n)/(1-q)+q^2(1-q^(n-1))+Q^3(1-q^(n-2))/(1-q)+...+
+q^n(1-q)/(1-q)
=(q+q^2+q^3+...+q^n)/(1-q)-nq^(n+1)/(1-q)
=[q(q^(n+1)+1)-q^(n+1)(n+1)](1-q)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sn=a1+a2+a3+……+a(n-1)+an
=q+q^2*2+q^3*3+……+q^(n-1)*(n-1)+q^(n+1)*n
qsn=q^2+q^3*2+q^4*3+……+q^n*(n-1)+q^(n+1)*n
两式相减:
(1-q)sn=q+q^2+q^3+q^4+……+q^n-q^(n+1)*n
=q[1-q^(n+1)]/(1-q)-q^(n+1)*n
=[q-q^(n+1)*n+q^(n+2)*(n-1)]/(1-q)
sn=[q-q^(n+1)*n+q^(n+2)*(n-1)]/(1-q)^2
=q+q^2*2+q^3*3+……+q^(n-1)*(n-1)+q^(n+1)*n
qsn=q^2+q^3*2+q^4*3+……+q^n*(n-1)+q^(n+1)*n
两式相减:
(1-q)sn=q+q^2+q^3+q^4+……+q^n-q^(n+1)*n
=q[1-q^(n+1)]/(1-q)-q^(n+1)*n
=[q-q^(n+1)*n+q^(n+2)*(n-1)]/(1-q)
sn=[q-q^(n+1)*n+q^(n+2)*(n-1)]/(1-q)^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令S1为要求的和,令S2为q乘S1然后用S2减S1,接下来应该会了,欢迎继续骚扰~这个是错位相减法,专门解决等差等比问题的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先写出前N项和Tn,然后写出T(n+1),还有q*Tn,用T(n+1)-q*Tn
就可以算出Tn了。
就可以算出Tn了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
乘以q以后用错位相减法啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询