矩阵平方的行列式和 矩阵行列式的平方一样吗
3个回答
展开全部
一样的,根据性质有|A^2|=|AA|=|A||A|=|A|^2。
对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开。
令A为n×n矩阵。
(i) 若A有一行或一列包含的元素全为零,则det(A)=0。
(ii) 若A有两行或两列相等,则det(A)=0。
扩展资料:
行列式A中某行(或列)用同一数k乘,其结果等于kA。行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
参考资料来源:百度百科--矩阵行列式
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
大体有三种解法, 法一:看它的秩是否为1,若为1的话一定可以写成一行(a)乘一列(b),即A=ab.这样的话,A^2=a(ba)b,注意这里ba为一数,可以提出,即A^2=(ba)A; 法二:看他能否对角化,如果可以的话即存在可逆矩阵a,使...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询