高等数学,图中第十题
1个回答
展开全部
约定:∫[a,b]表示[a,b]上的定积分
原式左边=∫[0,π](sinx)^ndx
=∫[-π/2,π/2](sin(t+(π/2))^nd(t+(π/2)) 设x=t+(π/2)
=∫[-π/2,π/2](cost)^ndt
=2∫[0,π/2](cost)^ndt (y=(cost)^n是偶函数)
=2∫[π/2,0](cos((π/2)-u))^nd(π/2)-u) 设t=(π/2)-u
=-2∫[π/2,0](sinu)^ndu
=2∫[0,π/2](sinu)^ndu
=2∫[0,π/2](sinx)^ndx
=原式右边
所以∫[0,π](sinx)^ndx=2∫[0,π/2](sinx)^ndx
希望能帮到你!
原式左边=∫[0,π](sinx)^ndx
=∫[-π/2,π/2](sin(t+(π/2))^nd(t+(π/2)) 设x=t+(π/2)
=∫[-π/2,π/2](cost)^ndt
=2∫[0,π/2](cost)^ndt (y=(cost)^n是偶函数)
=2∫[π/2,0](cos((π/2)-u))^nd(π/2)-u) 设t=(π/2)-u
=-2∫[π/2,0](sinu)^ndu
=2∫[0,π/2](sinu)^ndu
=2∫[0,π/2](sinx)^ndx
=原式右边
所以∫[0,π](sinx)^ndx=2∫[0,π/2](sinx)^ndx
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询