高等数学,图中第十题

 我来答
戒贪随缘
2015-12-21 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3687
采纳率:92%
帮助的人:1434万
展开全部
约定:∫[a,b]表示[a,b]上的定积分
原式左边=∫[0,π](sinx)^ndx
=∫[-π/2,π/2](sin(t+(π/2))^nd(t+(π/2)) 设x=t+(π/2)
=∫[-π/2,π/2](cost)^ndt
=2∫[0,π/2](cost)^ndt (y=(cost)^n是偶函数)
=2∫[π/2,0](cos((π/2)-u))^nd(π/2)-u) 设t=(π/2)-u
=-2∫[π/2,0](sinu)^ndu
=2∫[0,π/2](sinu)^ndu
=2∫[0,π/2](sinx)^ndx
=原式右边
所以∫[0,π](sinx)^ndx=2∫[0,π/2](sinx)^ndx

希望能帮到你!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式