一曲线通过点(2,3),他在两坐标轴间的任一切线线段均被切点平分,求曲线方程

 我来答
奔跑的窝牛的家
高粉答主

推荐于2018-11-24 · 每个回答都超有意思的
知道顶级答主
回答量:3.6万
采纳率:98%
帮助的人:4573万
展开全部
设曲线为y=f(x),设P(x0,y0)为曲线上一点
则切线为:f'(x0)(x-x0)=y-y0
令x=0
y=y0-x0f'(x0)
因P平分线段则y0-x0f'(x0)=2y0
f'(x0)=-y0/x0
则-xf'(x)=f(x)
设f(x)=g(x)/x
则g(x)/x==-x[-g(x)/x²+g'(x)/x]
=>g'(x)=0
则g(x)=c(c为任意实数)
则f(x)=c/x
由于f(x)经过(2,3)点
故f(x)=6/x
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式