第七题,求过程 50
1个回答
2017-03-28 · 知道合伙人教育行家
关注
展开全部
F(x)=∫[-∞~x]f(t)dt
依题意,
(1)当x<-1时,
F(x)=∫[-∞~x]0dt=0
(2)当-1≤x<0时,
F(x)=∫[-∞~-1]0dt+∫[-1~x](1+t)dt
=0+(t+t²/2) |[-1~x]
=x²/2+x+1/2
(3)当0≤x≤1时,
F(x)=∫[-∞~-1]0dt+∫[-1~0](1+t)dt
+∫[0~x](1-t)dt
=0+(t+t²/2) |[-1~0]
+(t-t²/2) |[0~x]
=0+1/2+x-x²/2
=-x²/2+x+1/2
(4)当x>1时,
F(x)=∫[-∞~-1]0dt+∫[-1~0](1+t)dt
+∫[0~1](1-t)dt+∫[1~x]0dt
=0+(t+t²/2) |[-1~0]
+(t-t²/2) |[0~1]
=1
综上,F(x)=
{ 0 x<-1时,
{x²/2+x+1/2 -1≤x<0时,
{-x²/2+x+1/2 0≤x≤1时,
{ 1 x>1时
依题意,
(1)当x<-1时,
F(x)=∫[-∞~x]0dt=0
(2)当-1≤x<0时,
F(x)=∫[-∞~-1]0dt+∫[-1~x](1+t)dt
=0+(t+t²/2) |[-1~x]
=x²/2+x+1/2
(3)当0≤x≤1时,
F(x)=∫[-∞~-1]0dt+∫[-1~0](1+t)dt
+∫[0~x](1-t)dt
=0+(t+t²/2) |[-1~0]
+(t-t²/2) |[0~x]
=0+1/2+x-x²/2
=-x²/2+x+1/2
(4)当x>1时,
F(x)=∫[-∞~-1]0dt+∫[-1~0](1+t)dt
+∫[0~1](1-t)dt+∫[1~x]0dt
=0+(t+t²/2) |[-1~0]
+(t-t²/2) |[0~1]
=1
综上,F(x)=
{ 0 x<-1时,
{x²/2+x+1/2 -1≤x<0时,
{-x²/2+x+1/2 0≤x≤1时,
{ 1 x>1时
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询