1个回答
展开全部
(1) y = x^3/(x^2+3) = (x^3+3x-3x)/(x^2+3) = x - 3x/(x^2+3)
y' = 1 - 3(3-x^2)/(x^2+3),
y'' = 3[-2x(x^2+3)-2x(3-x^2)]/(x^2+3) = -36x/(x^2+3)
凹区间 x∈(-∞, 0), 凸区间 x∈(0, +∞), 拐点 O(0, 0) .
(3) y' = (8/3)x^(5/3) - (5/3)x^(2/3)
y'' = (40/9)x^(2/3) - (10/9)x^(-1/3)
= (10/9)(4x-1)/x^(1/3)
令 y'' = 0, 得 x = 1/4, 二阶导数不存在的点是 x = 0.
凹区间 x∈(-∞, 0)∪(1/4, +∞) , 凸区间 x∈(0, 1/4),
拐点 O(0, 0) . P(1/4, -3/16^(4/3))
y' = 1 - 3(3-x^2)/(x^2+3),
y'' = 3[-2x(x^2+3)-2x(3-x^2)]/(x^2+3) = -36x/(x^2+3)
凹区间 x∈(-∞, 0), 凸区间 x∈(0, +∞), 拐点 O(0, 0) .
(3) y' = (8/3)x^(5/3) - (5/3)x^(2/3)
y'' = (40/9)x^(2/3) - (10/9)x^(-1/3)
= (10/9)(4x-1)/x^(1/3)
令 y'' = 0, 得 x = 1/4, 二阶导数不存在的点是 x = 0.
凹区间 x∈(-∞, 0)∪(1/4, +∞) , 凸区间 x∈(0, 1/4),
拐点 O(0, 0) . P(1/4, -3/16^(4/3))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询