1个回答
展开全部
对任意x∈(0,2),根据拉格朗日中值定理,有:
f(x)=f(x)-f(0)=(x-0)*f'(m)=x*f'(m),其中0<m<x
f(x)=f(x)-f(2)=(x-2)*f'(n),其中x<n<2
|f(x)|=x*|f'(m)|=(2-x)*|f'(n)|
因为f(x)在[0,2]上连续可导,所以导函数f'(x)在[0,2]上有界
即存在|f'(x)|的上确界A=sup|f'(x)|和下确界B=inf|f'(x)|
也就是说,对任意x∈(0,2),有B<=|f'(x)|<=A
x*B<=|f(x)|<=x*A,(2-x)*B<=|f(x)|<=(2-x)*A
∫(0,2)|f(x)|dx=∫(0,1)|f(x)|dx+∫(1,2)|f(x)|dx
<=∫(0,1)x*Adx+∫(1,2)(2-x)*Adx
=A/2+A/2
=A
∫(0,2)|f(x)|dx=∫(0,1)|f(x)|dx+∫(1,2)|f(x)|dx
>=∫(0,1)x*Bdx+∫(1,2)(2-x)*Bdx
=B/2+B/2
=B
即,inf|f'(x)|<=∫(0,2)|f(x)|dx<=sup|f'(x)|
根据连续函数介值定理,存在ξ∈[0,2],使得:|f'(ξ)|=∫(0,2)|f(x)|dx
f(x)=f(x)-f(0)=(x-0)*f'(m)=x*f'(m),其中0<m<x
f(x)=f(x)-f(2)=(x-2)*f'(n),其中x<n<2
|f(x)|=x*|f'(m)|=(2-x)*|f'(n)|
因为f(x)在[0,2]上连续可导,所以导函数f'(x)在[0,2]上有界
即存在|f'(x)|的上确界A=sup|f'(x)|和下确界B=inf|f'(x)|
也就是说,对任意x∈(0,2),有B<=|f'(x)|<=A
x*B<=|f(x)|<=x*A,(2-x)*B<=|f(x)|<=(2-x)*A
∫(0,2)|f(x)|dx=∫(0,1)|f(x)|dx+∫(1,2)|f(x)|dx
<=∫(0,1)x*Adx+∫(1,2)(2-x)*Adx
=A/2+A/2
=A
∫(0,2)|f(x)|dx=∫(0,1)|f(x)|dx+∫(1,2)|f(x)|dx
>=∫(0,1)x*Bdx+∫(1,2)(2-x)*Bdx
=B/2+B/2
=B
即,inf|f'(x)|<=∫(0,2)|f(x)|dx<=sup|f'(x)|
根据连续函数介值定理,存在ξ∈[0,2],使得:|f'(ξ)|=∫(0,2)|f(x)|dx
更多追问追答
追问
后面很多都没交啊
有没有简单的方法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询