大学数学 第六题求极限
2个回答
展开全部
解法1:用泰勒公式
原式=lim(x->0) [3x+(1/2)*(1-cos2x)-2x^3]/[tanx+4x^2]
=lim(x->0) (6x-4x^3+1-cos2x)/(2tanx+8x^2)
=lim(x->0) [6x-4x^3+1-(1-4x^2/2+o(x^3))]/[2(x+x^3/3+o(x^4))+4x^2]
=lim(x->0) [6x+2x^2-4x^3+o(x^3)]/[2x+4x^2+2x^3/3+o(x^4)]
=lim(x->0) [3+x-2x^2+o(x^2)]/[1+2x+x^2/3+o(x^3)]
=3
解法2:用洛必达法则
原式=lim(x->0) (3+sin2x-6x^2)/(sec^2x+8x)
=3
原式=lim(x->0) [3x+(1/2)*(1-cos2x)-2x^3]/[tanx+4x^2]
=lim(x->0) (6x-4x^3+1-cos2x)/(2tanx+8x^2)
=lim(x->0) [6x-4x^3+1-(1-4x^2/2+o(x^3))]/[2(x+x^3/3+o(x^4))+4x^2]
=lim(x->0) [6x+2x^2-4x^3+o(x^3)]/[2x+4x^2+2x^3/3+o(x^4)]
=lim(x->0) [3+x-2x^2+o(x^2)]/[1+2x+x^2/3+o(x^3)]
=3
解法2:用洛必达法则
原式=lim(x->0) (3+sin2x-6x^2)/(sec^2x+8x)
=3
追问
老兄 你不要随便复制粘贴好吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询