高数问题,计算 积分xe^-(x+y)dx,上下限分别为+∞.0,为什么用(x+y-y)e^-(x+
高数问题,计算积分xe^-(x+y)dx,上下限分别为+∞.0,为什么用(x+y-y)e^-(x+y)dx,拆成两个积分,这个方法做的结果不为e^-y?...
高数问题,计算 积分xe^-(x+y)dx,上下限分别为+∞.0,为什么用(x+y-y)e^-(x+y)dx,拆成两个积分,这个方法做的结果不为e^-y?
展开
1个回答
展开全部
如果两种算法结果不一样,总有一个错了,关键你没贴出你怎么算的,谁知到你怎么错误的,难道你以为它天然就不应该等于e^(-y)?
∫(x+y-y)e^-(x+y)dx=∫(x+y)e^-(x+y)d(x+y) -∫ye^-(x+y)dx
=-∫(x+y)de^-(x+y) -∫ye^-(x+y)dx
=-(x+y)e^-(x+y)|0,+∞ +∫e^-(x+y)d(x+y)-∫ye^-(x+y)dx
=ye^(-y) -e^-(x+y)|0,+∞ -∫ye^-(x+y)dx
=ye^(-y) +e^(-y) +ye^-(x+y)|0,+∞
=ye^(-y) +e^(-y) -ye^(-y)
=+e^(-y)
看来只是你算错了
∫(x+y-y)e^-(x+y)dx=∫(x+y)e^-(x+y)d(x+y) -∫ye^-(x+y)dx
=-∫(x+y)de^-(x+y) -∫ye^-(x+y)dx
=-(x+y)e^-(x+y)|0,+∞ +∫e^-(x+y)d(x+y)-∫ye^-(x+y)dx
=ye^(-y) -e^-(x+y)|0,+∞ -∫ye^-(x+y)dx
=ye^(-y) +e^(-y) +ye^-(x+y)|0,+∞
=ye^(-y) +e^(-y) -ye^(-y)
=+e^(-y)
看来只是你算错了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询