二元函数的极限怎么求

 我来答
教育小百科达人
2019-01-09 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:463万
展开全部

多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:

例如:

1.lim(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1

2.f(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x| 

lim(x,y)->(0,0) |x| = 0 

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x

同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y

显然这里就是-2f'x=6以及1/3f'y=2/3

扩展资料:

函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点  (无限个)都落在该邻域之内。

对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续

一致连续比连续的条件要苛刻很多。

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

以  的极限为例,f(x) 在点  以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数  ,使得当x满足不等式  时,对应的函数值f(x)都满足不等式:  ,那么常数A就叫做函数f(x)当 x→x。时的极限。

富港检测技术(东莞)有限公司_
2024-04-02 广告
错误,累次极限(你说的二次极限)与二重极限之间只有一个结论,就是它们如果都存在,则必相等,其它基本上什么都互推不出。 本题反例:z=xsin(1/xy),考虑(0,0)处的二重极限与累次极限。 首先二重极限显然是存在的,(x,y) >(0,... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
茹翊神谕者

2023-08-14 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25161

向TA提问 私信TA
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-11-27
展开全部
二元函数连续是要求函数从“四面八方”逼近一点时均存在极限且极限值相同。这里的这个极限,设是沿直线y=kx逼近(0,0),则为lim(kx²)/(x²+y²)=lim(kx²)/[(k²+1)x²]=k/(k²+1),这个极限值和k有关,即当k取不同...
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱说八卦i
高粉答主

2020-01-05 · 说的都是干货,快来关注
知道答主
回答量:4.7万
采纳率:14%
帮助的人:2267万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式