高数题微分

高数题微分要步骤... 高数题微分要步骤 展开
 我来答
bill8341
高粉答主

2017-12-24 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3700万
展开全部
求微分方程y'+y=e^(-x)的通解
先求齐次方程y'+y=0的通dy/dx=-y,分离变量得dy/y=-dx;
积分之,得lny=-x+lnC₁,即y=e^(-x+lnC₁)=C₁e^(-x);
为求原方程的通解,可用参数变易法:把积分常量C₁改为x的某个函数u,得:y=ue^(-x).(1)
将(1)的两边对x取导数得dy/dx=e^(-x)(du/dx)-ue^(-x).(2)
将(1)和(2)代入原式得e^(-x)(du/dx)-ue^(-x)+ue^(-x)=e^(-x);
即有e^(-x)(du/dx)=e^(-x),于是得du/dx=1,故得u=x+C;代入(1)式,即得原方程的通解为:
y=(x+C)e^(-x).
zhangsonglin_c
高粉答主

2017-12-22 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:7052万
展开全部
题?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式