小学数学如何做好数的运算教学
1个回答
展开全部
计算是我国小学数学教学的重要内容,它贯穿小学数学教学的始终,无论是数学概念的形成、数学结论的获得、还是数学问题的解决等都依赖于计算活动的参与。新的《数学课程标准》对计算教学在目标定位上提出了新要求,更注重让学生体验计算在生活中的意义,并能运用数学计算解决实际问题,使学生切身感受到数学就在身边,真正体验到学习数学的价值。而今,学生计算能力不尽人意,究其原因,需要先从影响学生计算的心理因素谈起。
l 影响学生计算的心理因素
影响学生计算的心理因素主要有:感知粗略、注意失调、记忆还原、表象模糊、情感脆弱、强信息干扰、思维定势副作用等方面。
以口算为例加以说明——
1、感知粗略
要进行口算,首先必须通过学生的感觉器官来感知数据和符号组成的算式。小学生感知事物的特点是比较笼统、粗糙、不具体,往往只注意到一些孤立的现象,看不出事物的联系及特征,因而头脑中留下的印象缺乏整体性。而口算题本身无情节,外显形式单调,不易引发兴趣。因此,学生口算时,往往只感知数据、符号的本身而较少考虑其意义,对相似、相近的数据或符号容易产生感知失真,造成差错。如一些学生常把“+”看作“×”,把“÷”看作是“+”,把“56”写成“65”,把“109”当成“169”等等。
2、 注意失调。
注意是心理活动对一定对象的指向与集中。注意的不稳定和较差的分配能力是产生口算差错的重要心理因素。小学生注意不稳定,不持久,不容易分配,注意的范围不广,易被无关因素吸引而出现“分心”现象。在口算过程中,需要经常注意或把注意同时分配在不同的对象上。由于小学生注意力所顾及的面不广,要求他们在同一时间内,把注意分配到两个或两个以上的对象时,往往顾此失彼,丢三落四。例如单独口算6×8和48+7等口算题,大部分学生能算准确,而把两题合起来时,算6×8+7,学生往往得45,忘记进位而造成差错。
3、记忆还原。
记忆的目的不仅是信息的贮存,更重要的是能准确地提取。学生贮存信息的过程中,由于生理、时间、复习量等多种因素的影响,使得贮存的信息消失或暂时中断,从而丢头忘尾,造成“遗忘性差错”。特别是连加、连减、进位加、退位减、连乘、连除等口算题,瞬时记忆量较大,如口算28×3时,要求学生能暂时记住每一步口算的结果,即20×3=60,8×3=24,并在脑中口算出60+24=84。而这类口算题出错的原因,主要是中间得数的贮存与提取不完整或遗忘所致。
4、表象模糊
表象是感知向思维过渡的桥梁。从运算形式看,小学生的口算是从直观感知过渡到表象运算,再到抽象运算。从小学生的思维特点看,其思维带有很大的具体形象性,表象常成为其思维的凭借物。特别是低年级儿童,常因口算方法的表象不清晰而产生差错。如一些一年级学生口算7+6、8+5等进位加法时,头脑中对“分解”→“凑十”→“合并”的表象模糊,想象不出“凑十法”的具体过程,因而出现差错。
5、情感脆弱
口算时,学生都希望很快算出结果。有些学生在做口算题时候,由于存在急于求成的心理,当数目小、算式简单时,易生“轻敌”思想;而当数目大、计算复杂时,又表现出不耐心,产生厌烦情绪。口算时,一些学生常不能全面精细地看题,认真耐心地分析,更不能正确合理地选择口算方法,进而养成题目未看清就匆匆动笔、做完不检查等陋习。
6、强信息干扰
小学生的视、听知觉是有选择性的,所接受信息的强弱程度影响他们的思考。强化了的信息在学生的头脑中留下了深刻的印象,如同数想减得0,0和1在计算中的特性,25×4=100,125×8=1000等等。这种强信息首先映入眼帘,容易掩盖其它信息。如口算18-18÷3,学生并非不懂得“先乘除后加减”的顺序,而是被“同数相减等于0”这一强信息所干扰,一些学生首先想到18-18=0,而忽视了运算顺序,错误地口算成18-18÷3=0。
7、思维定势负作用
定势是思维的一种“惯性”,是一定心理活动所形成的准备状态。这种准备状态可以决定同类后继活动的某种趋势。在540÷60、450÷90、360÷40等题之后夹一道300-50,很多学生往往错算成300-50=6。
l 正确处理计算教学中的四种关系
当前计算教学中,要想上好一节计算课,就必须处理好以下四个方面的关系:创设情境与复习铺垫的关系、算法多样化与算法优化的关系、算理直观与算法抽象的关系、形成技能与解决问题的关系。
一、正确处理创设情境与复习铺垫的关系
现在的计算教学几乎不见了传统教学中的复习铺垫,取而代之的是——情境创设。因此,很多计算课都创设生活情景,常常是创设“买东西” 或者是“逛商场”的情境,硬要从生活中得到一些数据用来计算或者一定要联系生活,难道这就是新课标的理念吗?
建构主义学习理论认为,学习总是与一定的社会文化背景即“情境”相联系
l 影响学生计算的心理因素
影响学生计算的心理因素主要有:感知粗略、注意失调、记忆还原、表象模糊、情感脆弱、强信息干扰、思维定势副作用等方面。
以口算为例加以说明——
1、感知粗略
要进行口算,首先必须通过学生的感觉器官来感知数据和符号组成的算式。小学生感知事物的特点是比较笼统、粗糙、不具体,往往只注意到一些孤立的现象,看不出事物的联系及特征,因而头脑中留下的印象缺乏整体性。而口算题本身无情节,外显形式单调,不易引发兴趣。因此,学生口算时,往往只感知数据、符号的本身而较少考虑其意义,对相似、相近的数据或符号容易产生感知失真,造成差错。如一些学生常把“+”看作“×”,把“÷”看作是“+”,把“56”写成“65”,把“109”当成“169”等等。
2、 注意失调。
注意是心理活动对一定对象的指向与集中。注意的不稳定和较差的分配能力是产生口算差错的重要心理因素。小学生注意不稳定,不持久,不容易分配,注意的范围不广,易被无关因素吸引而出现“分心”现象。在口算过程中,需要经常注意或把注意同时分配在不同的对象上。由于小学生注意力所顾及的面不广,要求他们在同一时间内,把注意分配到两个或两个以上的对象时,往往顾此失彼,丢三落四。例如单独口算6×8和48+7等口算题,大部分学生能算准确,而把两题合起来时,算6×8+7,学生往往得45,忘记进位而造成差错。
3、记忆还原。
记忆的目的不仅是信息的贮存,更重要的是能准确地提取。学生贮存信息的过程中,由于生理、时间、复习量等多种因素的影响,使得贮存的信息消失或暂时中断,从而丢头忘尾,造成“遗忘性差错”。特别是连加、连减、进位加、退位减、连乘、连除等口算题,瞬时记忆量较大,如口算28×3时,要求学生能暂时记住每一步口算的结果,即20×3=60,8×3=24,并在脑中口算出60+24=84。而这类口算题出错的原因,主要是中间得数的贮存与提取不完整或遗忘所致。
4、表象模糊
表象是感知向思维过渡的桥梁。从运算形式看,小学生的口算是从直观感知过渡到表象运算,再到抽象运算。从小学生的思维特点看,其思维带有很大的具体形象性,表象常成为其思维的凭借物。特别是低年级儿童,常因口算方法的表象不清晰而产生差错。如一些一年级学生口算7+6、8+5等进位加法时,头脑中对“分解”→“凑十”→“合并”的表象模糊,想象不出“凑十法”的具体过程,因而出现差错。
5、情感脆弱
口算时,学生都希望很快算出结果。有些学生在做口算题时候,由于存在急于求成的心理,当数目小、算式简单时,易生“轻敌”思想;而当数目大、计算复杂时,又表现出不耐心,产生厌烦情绪。口算时,一些学生常不能全面精细地看题,认真耐心地分析,更不能正确合理地选择口算方法,进而养成题目未看清就匆匆动笔、做完不检查等陋习。
6、强信息干扰
小学生的视、听知觉是有选择性的,所接受信息的强弱程度影响他们的思考。强化了的信息在学生的头脑中留下了深刻的印象,如同数想减得0,0和1在计算中的特性,25×4=100,125×8=1000等等。这种强信息首先映入眼帘,容易掩盖其它信息。如口算18-18÷3,学生并非不懂得“先乘除后加减”的顺序,而是被“同数相减等于0”这一强信息所干扰,一些学生首先想到18-18=0,而忽视了运算顺序,错误地口算成18-18÷3=0。
7、思维定势负作用
定势是思维的一种“惯性”,是一定心理活动所形成的准备状态。这种准备状态可以决定同类后继活动的某种趋势。在540÷60、450÷90、360÷40等题之后夹一道300-50,很多学生往往错算成300-50=6。
l 正确处理计算教学中的四种关系
当前计算教学中,要想上好一节计算课,就必须处理好以下四个方面的关系:创设情境与复习铺垫的关系、算法多样化与算法优化的关系、算理直观与算法抽象的关系、形成技能与解决问题的关系。
一、正确处理创设情境与复习铺垫的关系
现在的计算教学几乎不见了传统教学中的复习铺垫,取而代之的是——情境创设。因此,很多计算课都创设生活情景,常常是创设“买东西” 或者是“逛商场”的情境,硬要从生活中得到一些数据用来计算或者一定要联系生活,难道这就是新课标的理念吗?
建构主义学习理论认为,学习总是与一定的社会文化背景即“情境”相联系
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询