1个回答
展开全部
cos⁴x=(cos²x)²=[(1+cos2x)/2]²
=(1/4)(1+2cos2x+cos²2x)
=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)
=(3/8)+(1/2)cos2x+(1/8)cos4x
∫cos⁴xdx
=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx
=(3/8)x+(1/4)sin2x+(1/32)sin4x+C
∫1/(sinx+cosx)dx
=∫1/sin(x+π/4)dx
=∫csc(x+π/4)dx
=ln(csc(x+π/4)-cot(x+π/4))+C
=(1/4)(1+2cos2x+cos²2x)
=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)
=(3/8)+(1/2)cos2x+(1/8)cos4x
∫cos⁴xdx
=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx
=(3/8)x+(1/4)sin2x+(1/32)sin4x+C
∫1/(sinx+cosx)dx
=∫1/sin(x+π/4)dx
=∫csc(x+π/4)dx
=ln(csc(x+π/4)-cot(x+π/4))+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |