1个回答
展开全部
解:(1)小题,∵ρ=lim(n→∞)丨an+1/an丨=(1/2)lim(n→∞)(n+2)/(n+1)=1/2<1,∴按照比值审敛法,级数收敛。
(2)小题,∵ρ=lim(n→∞)丨an+1/an丨=2lim(n→∞)(n+1)=∞,∴按照比值审敛法,级数发散。
(3)小题,∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)[(n+1)/(2n+3)][(2n+1)(1+1/n)/(2n+3)]^n=1/2<1,∴按照比值审敛法,级数收敛。
供参考。
(2)小题,∵ρ=lim(n→∞)丨an+1/an丨=2lim(n→∞)(n+1)=∞,∴按照比值审敛法,级数发散。
(3)小题,∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)[(n+1)/(2n+3)][(2n+1)(1+1/n)/(2n+3)]^n=1/2<1,∴按照比值审敛法,级数收敛。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询