一道高数竞赛题!求大神解答>o< 50
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏50(财富值+成长值)
2个回答
展开全部
题目确认下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用泰勒展开式.
√ln(x+1)=√(x-x^2/2+o(x^2))
所以√x-√ln(x+1)=√x-√(x-x^2/2+o(x^2))
=(x-x+x^2/2+o(x^2))/(√x+√(x-x^2/2+o(x^2))
=(x^2/2+o(x^2))/(√x+√(x-x^2/2+o(x^2))
所以lim(x→0)(√x-√ln(x+1))/(cx^k)=lim(x→0)(x^2/2+o(x^2))/(cx^k(√x+√(x-x^2/2+o(x^2)))
=lim(x→0)(1/2+o(1))/(cx^(k-3/2)(1+√(1-x/2+o(x)))=1
所以k-3/2=0,k=3/2
所以(1/2)/(c(1+1))=1,c=1/4
√ln(x+1)=√(x-x^2/2+o(x^2))
所以√x-√ln(x+1)=√x-√(x-x^2/2+o(x^2))
=(x-x+x^2/2+o(x^2))/(√x+√(x-x^2/2+o(x^2))
=(x^2/2+o(x^2))/(√x+√(x-x^2/2+o(x^2))
所以lim(x→0)(√x-√ln(x+1))/(cx^k)=lim(x→0)(x^2/2+o(x^2))/(cx^k(√x+√(x-x^2/2+o(x^2)))
=lim(x→0)(1/2+o(1))/(cx^(k-3/2)(1+√(1-x/2+o(x)))=1
所以k-3/2=0,k=3/2
所以(1/2)/(c(1+1))=1,c=1/4
追问
回答的不是这道题
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询