(高数问题)求极限
展开全部
解法一:0/0型,采用洛必达法则
(x->1)lim(1-x)tan(πx/2)
=(x->1)lim(1-x)sin(πx/2)/cos(πx/2)
=(x->1)lim(1-x)/cos(πx/2)
=(x->1)lim(-1)/[-πsin(πx/2)/2]
=2/π
解法二:先用换元法,然后应用三角函数变形,最后应用重要极限 (x->0) lim sinx/x=1
(x->1) lim (1-x)tan(πx/2) 令 1-x=t
=(t->0) lim t sin(π(1-t)/2) / cos(π(1-t)/2)
=(t->0) lim t cos(πt/2) / sin(πt/2)
=(t->0) lim t / sin(πt/2)
=(t->0) 2/π lim (πt/2) /sin(πt/2)
=(t->0) 2/π lim 1/[sin(πt/2)/(πt/2)]
=2/π
(x->1)lim(1-x)tan(πx/2)
=(x->1)lim(1-x)sin(πx/2)/cos(πx/2)
=(x->1)lim(1-x)/cos(πx/2)
=(x->1)lim(-1)/[-πsin(πx/2)/2]
=2/π
解法二:先用换元法,然后应用三角函数变形,最后应用重要极限 (x->0) lim sinx/x=1
(x->1) lim (1-x)tan(πx/2) 令 1-x=t
=(t->0) lim t sin(π(1-t)/2) / cos(π(1-t)/2)
=(t->0) lim t cos(πt/2) / sin(πt/2)
=(t->0) lim t / sin(πt/2)
=(t->0) 2/π lim (πt/2) /sin(πt/2)
=(t->0) 2/π lim 1/[sin(πt/2)/(πt/2)]
=2/π
追问
这个应该是用定积分的概念,就是求和的概念转换为定积分计算的,但是求和的那个公式我不知道该怎么写。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询