为什么行列式再取行列式会等于行列式的n次方?
1个回答
展开全部
因为行列式 |kA| = k的n次方倍的|A|
这里的 |kA| 表示的是行列式A中的每一个元素都乘了一个k.
给行列式|A|中的某一行/列乘以一个数k相当于k倍的|A|, 即k|A|. 如果|kA|是一个n阶行列式的话, 那么每一行都提出了一个k, 一共有n行, 所以是k^n|A|; 或者也可以是每一列都提出了一个k, 一共有n列, 所以是k^n|A|
行列式其实是一个数, ||A|| 中的 |A|是一个数, 相当于上面的k, 把一个数从一个n阶行列式中提出, 结果就是这个数的n次方, 即|A|的n次方
这里的 |kA| 表示的是行列式A中的每一个元素都乘了一个k.
给行列式|A|中的某一行/列乘以一个数k相当于k倍的|A|, 即k|A|. 如果|kA|是一个n阶行列式的话, 那么每一行都提出了一个k, 一共有n行, 所以是k^n|A|; 或者也可以是每一列都提出了一个k, 一共有n列, 所以是k^n|A|
行列式其实是一个数, ||A|| 中的 |A|是一个数, 相当于上面的k, 把一个数从一个n阶行列式中提出, 结果就是这个数的n次方, 即|A|的n次方
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询