收敛半径,公式,步骤

 我来答
魅涯的天空
2018-03-30 · 平常喜欢动动手做美食。
魅涯的天空
采纳数:234 获赞数:9005

向TA提问 私信TA
展开全部

根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,1/ρ;ρ = 0时,+∞;ρ =+∞时,R= 0。

  1. 根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则: ρ是正实数时,1/ρ。 ρ = 0时,+∞。ρ =+∞时,R= 0。

  2. 根据根值审敛法,则有柯西-阿达马公式,或者,复分析中的收敛半径,将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。收敛半径可以被如下定理刻画:个中心为 a的幂级数 f的收敛半径 R等于 a与离 a最近的使得函数不能用幂级数方式定义的点的距离,到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘,最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此.

  3. 例如:函数没有复根。它在零处的泰勒展开为:运用达朗贝尔审敛法可以得到它的收敛半径为1。与此相应的,函数 f(z) 在 ±i 存在奇点,其与原点0的距离是1。三角函数中的正切函数可以被表达成幂级数:运用审敛法可以知道收敛半径为1。

  4. 考虑如下幂级数展开:其中有理数 Bn是所谓的伯努利数。对于上述幂级数,很难运用审敛法来计算收敛半径,但运用上面提到的复域中的准则就可以很快得到结果:当 z=0 时,函数没有奇性,因为是可去奇点。仅有的不可去奇点是其他使分母为零的取值,即使得e1 = 0的复数 z。设z= x+ iy,那么要使之等于1,则虚部必须为零。于是有 y= kπ,其中 。同时得到 x= 0。回代后发现 k只能为偶数,于是使得分母为零的 z为2kπi的形式,其中 。离原点最近距离为 2π,于是收敛半径为 2π。

  5. 收敛圆上的敛散性如果幂级数在 a附近可展,并且收敛半径为 r,那么所有满足 |z a| = r的点的集合(收敛圆盘的边界)是一个圆,称为收敛圆。幂级数在收敛圆上可能收敛也可能发散。即使幂级数在收敛圆上收敛,也不一定绝对收敛。

  6. 函数: (z) = (1 z) 在z= 0 处展开的幂级数收敛半径为1,并在收敛圆上的所有点处发散。

  7. 幂级数的收敛半径是 1 并在整个收敛圆上收敛。设 h(z) 是这个级数对应的函数,那么h(z) 是例2中的 g(z) 除以 z後的导数。 h(z) 是双对数函数。幂级数的收敛半径是 1 并在整个收敛圆上一致收敛,但是并不在收敛圆上绝对收敛。

xlp0417
2015-10-14 · TA获得超过1.9万个赞
知道大有可为答主
回答量:7213
采纳率:88%
帮助的人:2522万
展开全部
一个一般结论,

ρ=lim(n→∞)|a(n+1)/a(n)|
其中,ρ≠0
那么,收敛半径
R=1/ρ
追答
本题,易求出
ρ=1
∴R=1/ρ=1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式