2个回答
展开全部
x->0
分子
e^(cosx)
= e^[1-(1/2)x^2] +o(x^2)
=e. e^[(-1/2)x^2] +o(x^2)
=e.[ 1 -(1/2)x^2] +o(x^2)
e- e^(cosx) = (1/2)e.x^2 +o(x^2)
分母
(1+x^2)^(1/3) = 1+(1/3)x^2 +o(x^2)
(1+x^2)^(1/3) -1 =(1/3)x^2 +o(x^2)
/
lim(x->0) [e- e^(cosx) ]/[ (1+x^2)^(1/3) -1 ]
=lim(x->0) (1/2)e.x^2 /[ (1/3)x^2 ]
=(3/2)e
分子
e^(cosx)
= e^[1-(1/2)x^2] +o(x^2)
=e. e^[(-1/2)x^2] +o(x^2)
=e.[ 1 -(1/2)x^2] +o(x^2)
e- e^(cosx) = (1/2)e.x^2 +o(x^2)
分母
(1+x^2)^(1/3) = 1+(1/3)x^2 +o(x^2)
(1+x^2)^(1/3) -1 =(1/3)x^2 +o(x^2)
/
lim(x->0) [e- e^(cosx) ]/[ (1+x^2)^(1/3) -1 ]
=lim(x->0) (1/2)e.x^2 /[ (1/3)x^2 ]
=(3/2)e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询