粒子群优化参数寻优
2020-01-16 · 技术研发知识服务融合发展。
中地数媒
中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命
向TA提问
关注
展开全部
研究PSO参数寻优中,采用粒子群算法对SVM的参数(惩罚参数C,核函数参数σ)进行最优选择。PSO是一种进化计算技术,由Eberhart和Kennedy于1995年提出,其思想源于鸟类捕食行为,算法的数学描述如下(何同弟等,2011):
设在一个D维搜索空间中,由有m个粒子组成的一个群体,其中第i个粒子的位置表示为向量zi=(zi1,zi2,…,ziD),i=1,2,…,m。第i个粒子的飞行速度表示为向量vi=(vi1,vi2,…,viD),其搜索的最佳位置pi=(pi1,pi2,…,piD),整个粒子群搜索到的最优位置pg=(pg1,pg2,…,pgD)。找到这两个最优位置时,各粒子根据如下公式更新自己的速度和位置:
高光谱遥感影像信息提取技术
式中:i=1,2,…,m;ψ是惯性权重函数,用来控制前面速度对当前速度的影响;c1和c2称为加速因子,为非负常数;r1和r2是[0,1]的随机数。
柚鸥ASO
2024-03-16 广告
2024-03-16 广告
「柚鸥ASO」在ASO这块就做的蛮不错的,一直专注于应用商店优化,因为专注所以专业;专注应用商店下载量优化、评分优化、关键词排名优化、关键词覆盖、产品权重提升等等整体方案优化服务柚鸥网络-全球ASO优化服务商专注ASO优化已11年!(效果说...
点击进入详情页
本回答由柚鸥ASO提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询