f(x)=((√(1+xsinx))-cosx)/x²,当x≠0时,F(x)=f(x)?

f(x)=((√(1+xsinx))-cosx)/x²,当x≠0时,F(x)=f(x),且F(x)在点x=0处连续,F(0)=?... f(x)=((√(1+xsinx))-cosx)/x²,当x≠0时,F(x)=f(x),且F(x)在点x=0处连续,F(0)=? 展开
 我来答
茹翊神谕者

2021-06-24 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1648万
展开全部

简单计算一下即可,答案如图所示

积角累4703
2020-03-07 · TA获得超过4784个赞
知道大有可为答主
回答量:6553
采纳率:83%
帮助的人:220万
展开全部
很简单
解:f(x)=(sinx-1)/√(3-2cosx-2sinx)
上式可化为
f(x)=-(1-sinx)/√[(1-cosx)²+(1-sinx)²] 根据-1≤sinx≤1
f(x)=-1/√{1+[(1-cosx)/(1-sinx)]²}
上式焦点就是求 g(x)=(1-cosx)/(1-sinx)的值域了
根据万能公式 sinx=(2tanx/2)/[1+(tanx/2)²]
cosx=[1-(tanx/2)²]/[1+(tanx/2)²]
由0≤x≤360度 得到 0≤x/2≤180度 从而tanx/2 的值域是实数集
g(x)=(1-cosx)/(1-sinx)可以化为
[g(x)-2](tanx/2)²-2g(x)tanx/2+g(x)=0
由于tanx/2的值域是实数,则上式必有解
△=[2g(x)]²-4[g(x)-2]g(x)≥0
求得 g(x)≥0,这里需要知道g(x)≠2
特别当g(x)=2时,得到2sinx-cosx=1 得到 √3sin(x+φ)=1故g(x)=2时也成立
故g(x)的值域是[0,+∞)同理[g(x)]²的值域是[0,+∞)
f(x)=1/√[1+(g(x))²]的外函数显然是增函数
所以f(x)的值域是[1,+∞)
追问
你是不是没看完题......,这题应该没这么多步骤
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我爱源源2018
2020-03-07
知道答主
回答量:41
采纳率:66%
帮助的人:8.4万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式