高二数学数列求解。 20
3个回答
展开全部
(1)
a3²=a2(a4+1)
(a1+2d)²=(a1+d)(a1+3d+1)
a1=2代入,整理,得d²-d-2=0
(d+1)(d-2)=0
d=-1(舍去)或d=2
an=a1+(n-1)d=2+2(n-1)=2n
数列{an}的通项公式为an=2n
(2)
bn=2/[n(an+2)]
=2/[n(2n+2)]
=1/[n(n+1)]
=1/n -1/(n+1)
Sn=b1+b2+...+bn
=1/1 -1/2 +1/2 -1/3+...+1/n -1/(n+1)
=1- 1/(n+1)
=n/(n+1)
a3²=a2(a4+1)
(a1+2d)²=(a1+d)(a1+3d+1)
a1=2代入,整理,得d²-d-2=0
(d+1)(d-2)=0
d=-1(舍去)或d=2
an=a1+(n-1)d=2+2(n-1)=2n
数列{an}的通项公式为an=2n
(2)
bn=2/[n(an+2)]
=2/[n(2n+2)]
=1/[n(n+1)]
=1/n -1/(n+1)
Sn=b1+b2+...+bn
=1/1 -1/2 +1/2 -1/3+...+1/n -1/(n+1)
=1- 1/(n+1)
=n/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询