lim[x→∞] (x+2/x+1)^x
3个回答
展开全部
像是重要极限中的1的∞次方,配形式即可,或者用洛必达法则,e的xln(x+2/x+1)次方,求极限
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim[x→∞] [(x+2)/(x+1)]^x = lim[x→∞] [1+1/(x+1)]^x
= lim[x→∞] {[1+1/(x+1)]^(x+1)}^[x/(x+1)]
= e^lim[x→∞][x/(x+1)] = e^lim[x→∞][1/(1+1/x)] = e
= lim[x→∞] {[1+1/(x+1)]^(x+1)}^[x/(x+1)]
= e^lim[x→∞][x/(x+1)] = e^lim[x→∞][1/(1+1/x)] = e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询