试用初等数论的理论(如整除理论、同余理论等)简述对小学数学教学的指导意义? 5

 我来答
帐号已注销
2019-12-23 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:335万
展开全部

若整数b除以非零整数a,商为整数,且无余数, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。

整除与除尽既有区别又有联系。除尽是指数b除以数a(a≠0)所得的商是整数或有限小数而余数是零时,我们就说b能被a除尽(或说a能除尽b)。因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而无余数.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要无余数就可以了。它们之间的联系就是整除是除尽的特殊情况。

①若b|a,c|a,且b和c互质,则bc|a。

②对任意非零整数a,±a|a=±1。

整除抽象图(5张)


③若a|b,b|a,则|a|=|b|。

④如果a能被b整除,c是任意整数,那么积ac也能被b整除。

⑤对任意整数a,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r<b,这个事实称为带余除法定理,是整除理论的基础。

⑥若c|a,c|b,则称c是a,b的公因数。若d是a,b的公因数,d≥0,且d可被a,b的任意公因数整除,则d是a,b的最大公因数。若a,b的最大公因数等于1,则称a,b互素,也称互质。累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法。又称欧几里得算法

能被2整除的数的特征

若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

能被3整除的数的特征

1,若一个整数的数字和能被3整除,则这个整数能被3整除。

2,推论:由相同的数字组成的三位数、六位数、九位数……3n位数(n为自然数),这些数字能被3整除。如111能被3整除。

能被5整除的数的特征

若一个整数的末位是0或5,则这个数能被5整除。

能被7整除的数的特征

1.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。同能被17整除的数的特征。

2.末三位以前的数与末三位以后的差(或反过来)。同能被11,13整除的数的特征。

能被11整除的数的特征

若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

能被13整除的数的特征

若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

能被17整除的数的特征

若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

能被19整除的数的特征

1、若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果和太大或心算不易看出是否19的倍数,就需要继续使用能被13整除特征的方法。

2、若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

希望我能帮助你解疑释惑。

夔自浪7111
2019-12-23 · TA获得超过6179个赞
知道大有可为答主
回答量:1万
采纳率:62%
帮助的人:676万
展开全部
1。素数的剩余类构成域,
2。公式:a^p ≡ a (mod p),若 a 不能被 p 整除,则 a^(p-1) ≡ 1 (mod p),
需要学习、研究集合中的群环域理论,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
婉顺还轻盈灬宝贝457
2019-12-23 · TA获得超过6234个赞
知道大有可为答主
回答量:1.3万
采纳率:49%
帮助的人:580万
展开全部
初等数论是研究数的规律,特别是整数性质的数学分支。它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。 换言之,初等数论就是用初等、朴素的方法去研究数论。另外还有解析数论(用解析的方法研究数论)、代数数论(用代数结构的方法研究数论)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
砂粒312
高粉答主

2019-12-23 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.5万
采纳率:96%
帮助的人:6556万
展开全部
初等数论是一门古老的数学基础学科,主要研究整数的基本性质,它的理论和方法已广泛用于现代密码学、算子理论、最优设计、组合代数及信息科学等诸多领域.师范院校小学教育专业开设的初等数论课程作为一门专业主干课程,主要研究整数的整除与同余及不定方程,其中的许多内容如整除、约数、倍数、分解质因数等概念和性质都是现行小学数学的主要内容,对小学数学的教学和研究具有重要的指导作用,而小学教育专业的数学类课程设置的目标是为了培养合格的小学数学教师,所以小学教育专业开设初等数论课程很有必要。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式