1个回答
展开全部
∫(2->+∞) xlnx/(1-x^2)^2 dx
=(1/2)∫(2->+∞) lnx d[1/(1-x^2)]
=(1/2) [ lnx /(1-x^2)] |(2->+∞) - (1/2)∫(2->+∞) dx/[x(1-x^2)]
=(1/6)ln2 - (1/2)∫(2->+∞) dx/[x(1-x^2)]
=(1/6)ln2 + (1/2)∫(2->+∞) dx/[x(x^2 -1)]
=(1/6)ln2 + (1/2)∫(2->+∞) { -1/x +(1/2)[1/(x-1)] + (1/2) [1/(x+1)] } dx
=(1/6)ln2 + (1/2)[ ln|√(x^2-1)/x| ]|(2->+∞)
=(1/6)ln2 - (1/2)ln(√3/2)
=(1/6)ln2 -[(1/4)ln3 -(1/2)ln2]
=(2/3)ln2 - (1/4)ln3
let
1/[x(x^2-1)] ≡ A/x + B/(x-1) + C/(x+1)
=>
1≡ A(x-1)(x+1)+Bx(x+1) +Cx(x-1)
x=0, => A = -1
x=1, =>B= 1/2
x=-1, => C= 1/2
1/[x(x^2-1)] ≡ -1/x +(1/2)[1/(x-1)] + (1/2) [1/(x+1)]
=(1/2)∫(2->+∞) lnx d[1/(1-x^2)]
=(1/2) [ lnx /(1-x^2)] |(2->+∞) - (1/2)∫(2->+∞) dx/[x(1-x^2)]
=(1/6)ln2 - (1/2)∫(2->+∞) dx/[x(1-x^2)]
=(1/6)ln2 + (1/2)∫(2->+∞) dx/[x(x^2 -1)]
=(1/6)ln2 + (1/2)∫(2->+∞) { -1/x +(1/2)[1/(x-1)] + (1/2) [1/(x+1)] } dx
=(1/6)ln2 + (1/2)[ ln|√(x^2-1)/x| ]|(2->+∞)
=(1/6)ln2 - (1/2)ln(√3/2)
=(1/6)ln2 -[(1/4)ln3 -(1/2)ln2]
=(2/3)ln2 - (1/4)ln3
let
1/[x(x^2-1)] ≡ A/x + B/(x-1) + C/(x+1)
=>
1≡ A(x-1)(x+1)+Bx(x+1) +Cx(x-1)
x=0, => A = -1
x=1, =>B= 1/2
x=-1, => C= 1/2
1/[x(x^2-1)] ≡ -1/x +(1/2)[1/(x-1)] + (1/2) [1/(x+1)]
更多追问追答
追问
你直接说对不对就好了😂
这一大串看得我有点晕
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询