求解图片中微分方程通解,需要详细过程,麻烦了,谢谢!!!!
展开全部
let
u= y/x
du/dx = (xy' - y)/x^2
x.du/dx = y' - y/x
y' = u + x.du/dx
/
xy' - xsin(y/x) -y =0
y' - sin(y/x) -(y/x) =0
u + x.du/dx - sinu - u = 0
x.du/dx = sinu
∫cscu du =∫dx/x
ln|cscu- cotu | = ln|x| + C'
cscu- cotu = Cx
csc(y/x) - cot(y/x) = Cx
u= y/x
du/dx = (xy' - y)/x^2
x.du/dx = y' - y/x
y' = u + x.du/dx
/
xy' - xsin(y/x) -y =0
y' - sin(y/x) -(y/x) =0
u + x.du/dx - sinu - u = 0
x.du/dx = sinu
∫cscu du =∫dx/x
ln|cscu- cotu | = ln|x| + C'
cscu- cotu = Cx
csc(y/x) - cot(y/x) = Cx
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询