
1个回答
展开全部
因为∑是以z轴对称,所以dz=0
原式=∫∫(∑) (z+a)^2dxdy/√(x^2+y^2+z^2)
=∫∫(Dxy) [a-√(a^2-x^2-y^2)]^2dxdy/a
=(1/a)*∫(0,2π)dθ*∫(0,a)[a-√(a^2-r^2)]^2*rdr
=(-π/a)*∫(0,a) [2a^2-r^2-2a√(a^2-r^2)]*d(a^2-r^2)
=(-π/a)*[a^2*(a^2-r^2)+(1/2)*(a^2-r^2)^2-(4a/3)*(a^2-r^2)^(3/2)]|(0,a)
=(-π/a)*[-a^4-(1/2)*a^4+(4/3)*a^4]
=(π/6)*a^3
原式=∫∫(∑) (z+a)^2dxdy/√(x^2+y^2+z^2)
=∫∫(Dxy) [a-√(a^2-x^2-y^2)]^2dxdy/a
=(1/a)*∫(0,2π)dθ*∫(0,a)[a-√(a^2-r^2)]^2*rdr
=(-π/a)*∫(0,a) [2a^2-r^2-2a√(a^2-r^2)]*d(a^2-r^2)
=(-π/a)*[a^2*(a^2-r^2)+(1/2)*(a^2-r^2)^2-(4a/3)*(a^2-r^2)^(3/2)]|(0,a)
=(-π/a)*[-a^4-(1/2)*a^4+(4/3)*a^4]
=(π/6)*a^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询