1个回答
展开全部
在数学分析中,与收敛(convergence)相对的概念就是发散(divergence).发散函数的定义是:令f(x)为定义在R上的函数,如果存在实数b>0,对于任意给出的c>0,任意x1,x2满足|x1-x2|0,对任意x1,x2满足0。
简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。
例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。
f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。
简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。
例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。
f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询