这道高数题怎么做?
f(x) = x- (a+bcosx)sinx = x-asinx -(b/2)sin2x
=>f(0) = 0
f'(x) = 1 - acosx - bcos2x
f'(0)=0
1-a-b =0
a+b=1 (1)
f''(x) = asinx + 2bsin2x
f''(0) =0
f'''(x) = acosx + 4bcos2x
f'''(0)=0
a+4b=0 (2)
(1)-(2)
-3b=1
b=-1/3
from (1)
a+b=1
a-1/3=1
a= 4/3
ie
(a,b) = (4/3 -1/3)
f'''(x) = acosx + 4bcos2x =(4/3)cosx -(4/3)cos2x
f''''(x) = -(4/3)sinx +(8/3)sin2x
f^(5)(x) =-(4/3)cosx +(16/3)cos2x
f^(5)(0) = -4/3 +16/3 = 4
f^(5)(0)/5! = 1/30
lim(x->0) f(x)/x^5
=lim(x->0) (1/30)x^5/x^5
=1/30