
1个回答
展开全部
是齐次方程,令 y = xu,则 微分方程化为
u + xdu/dx = (1+u)/(1-u)
xdu/dx = (1+u)/(1-u) - u = (1+u^2)/(1-u)
(1-u)du/(1+u^2) = dx/x
arctanu - (1/2)ln(1+u^2) = lnx + lnC
e^(arctanu) = Cx√(1+u^2)
通解是 e^[arctan(y/x)] = C√(x^2+y^2)
u + xdu/dx = (1+u)/(1-u)
xdu/dx = (1+u)/(1-u) - u = (1+u^2)/(1-u)
(1-u)du/(1+u^2) = dx/x
arctanu - (1/2)ln(1+u^2) = lnx + lnC
e^(arctanu) = Cx√(1+u^2)
通解是 e^[arctan(y/x)] = C√(x^2+y^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询