级数(-1)^nlnn/n敛散性

 我来答
茹翊神谕者

2021-06-12 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1538万
展开全部

简单计算一下即可,答案如图所示

曹树花节雀
2019-06-06 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:25%
帮助的人:979万
展开全部
因为二者均为正项级数,且
当n>=6,(n+1)!
1的p级数,它是收敛的!
利用比较审敛法,得
原级数是收敛的!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
圭时芳哈霜
2020-04-01 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:26%
帮助的人:609万
展开全部
应该是∑(-1)^n
·
lnn/n^p吧
交错级数,只需一般项趋于0即可(显然可以从某项开始是单调的),故当且仅当p>0,此时lnn/n^p→0(当n→+∞时)级数收敛,
而且p>1时绝对收敛,0
评论
0
0
0
加载更多
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式