求arctanx/(1+x^2)^(3/2)的不定积分,急!

 我来答
茹翊神谕者

2021-11-12 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1535万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5e46bb1a157
2020-03-19 · TA获得超过3772个赞
知道大有可为答主
回答量:3115
采纳率:28%
帮助的人:437万
展开全部
∫ arctanx / (1+x²)^(3/2) dx
= ∫ arctanx d[x/√(x²+1)],分部积分法,∫ dx/(1+x²)^(3/2) = x/√(x²+1)
= [x/√(x²+1)]arctanx - ∫ x/√(x²+1) d(arctanx),(arcanx)' = 1/(x²+1)
= x*arctanx / √(x²+1) - ∫ x/(x²+1)^(3/2) dx
= x*arctanx / √(x²+1) - (1/2)∫ d(x²+1)/(x²+1)^(3/2)
= x*arctanx / √(x²+1) - (1/2)*(x²+1)^(-3/2+1) / (-3/2+1) + C
= x*arctanx / √(x²+1) - (1/2)(-2)(x²+1)^(-1/2) + C
= x*arctanx / √(x²+1) + 1/√(x²+1) + C
= (x*arctanx + 1) / √(x² + 1) + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式