求助,这道高数题怎么写?
1个回答
展开全部
因为被积函数1/(100+cos^2x+cos^2y)关于x和y都是偶函数
且积分区域D:|x|+|y|<=10同时关于x轴和y轴对称
所以根据二重积分的对称性
原式=4*∫∫(D') dxdy/(100+cos^2x+cos^2y),其中D'={(x,y)|x+y<=10,x>=0,y>=0}
根据二元函数最值的性质,最大最小值分别在D'的边界交点处取得
三个边界交点分别为(0,0),(10,0),(0,10)
所以1/102<=1/(100+cos^2x+cos^2y)<=1/[101+(cos10)^2]
又因为区域D'的面积=(1/2)*10*10=50
所以50/102<=∫∫(D') dxdy/(100+cos^2x+cos^2y)<=50/[101+(cos10)^2]
100/51<=∫∫(D) dxdy/(100+cos^2x+cos^2y)<=400/[101+(cos10)^2]
且积分区域D:|x|+|y|<=10同时关于x轴和y轴对称
所以根据二重积分的对称性
原式=4*∫∫(D') dxdy/(100+cos^2x+cos^2y),其中D'={(x,y)|x+y<=10,x>=0,y>=0}
根据二元函数最值的性质,最大最小值分别在D'的边界交点处取得
三个边界交点分别为(0,0),(10,0),(0,10)
所以1/102<=1/(100+cos^2x+cos^2y)<=1/[101+(cos10)^2]
又因为区域D'的面积=(1/2)*10*10=50
所以50/102<=∫∫(D') dxdy/(100+cos^2x+cos^2y)<=50/[101+(cos10)^2]
100/51<=∫∫(D) dxdy/(100+cos^2x+cos^2y)<=400/[101+(cos10)^2]
更多追问追答
追问
这个1/102是怎么得到的?
追答
就是把(0,0)代入到1/(100+cos^2x+cos^2y)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询