∫ dx/x根号(a2+x2)积分怎么求
展开全部
令x = a * tanz,dx = a * sec²z dz
sinz = x/√(a² + x²),cscz = √(a² + x²)/x,cotz = 1/tanz = a/x
∫ dx/[x√(a² + x²)]
= ∫ 1/[(a * tanz) * |a * secz|] * (a * sec²z dz)
= (1/a)∫ cscz dz
= (1/a)ln|cscz - cotz| + C
= (1/a)ln|√(a² + x²)/x - a/x| + C
= (1/a)ln| [√(a² + x²) - a]/x | + C
sinz = x/√(a² + x²),cscz = √(a² + x²)/x,cotz = 1/tanz = a/x
∫ dx/[x√(a² + x²)]
= ∫ 1/[(a * tanz) * |a * secz|] * (a * sec²z dz)
= (1/a)∫ cscz dz
= (1/a)ln|cscz - cotz| + C
= (1/a)ln|√(a² + x²)/x - a/x| + C
= (1/a)ln| [√(a² + x²) - a]/x | + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询