已知函数f(x)=mx2+nx+3m+n是偶函数,且其定义域为[m-1,2m].(1)求m,n的值;(2)求函数f(x)在其

 我来答
生兰英漆雁
2020-02-29 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:1104万
展开全部
(1)∵函数f(x)=mx2+nx+3m+n是偶函数,
∴函数的定义值关于原点对称,
又∵函数f(x)的定义域为[m-1,2m].
∴m-1+2m=0,解得m=
1
3
又由f(-x)=mx2-nx+3m+n=f(x)=mx2+nx+3m+n
可得n=0
(2)由(1)得函数的解析式为:f(x)=
1
3
x2+1,定义域为[-
2
3

2
3
].
其图象是开口方向朝上,且以Y轴为对称轴的抛物线
当x=±
2
3
时,f(x)取最大值
31
27
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式