问一个有关高数微分方程求解的问题,请高手解答,谢谢!!
展开全部
举一个例子,方程dy/y=dx/x按原来的解法是:
两边积分:ln|y|=ln|x|+C1(这作为方程的通解已经是对的了,不过其形式不够漂亮)
如果我们希望得到显式解,则
|y|=e^[ln|x|+C1]=e^ln|x|*e^C1
==>
y=(±e^C1)*|x|=±(±e^C1)*x
由于C1是任意实数,所以e^C1是任意正实数,±(±e^C1)则是任意的非零实数,我们把它记作C,于是得到这个方程的显式的通解:y=Cx
怪麻烦的吧?由于这种方程经常遇到,每次这样写确实感到麻烦,因此在解微分方程时,如果积分以后得到的函数里有对数函数的项,我们就使用下面的简洁写法:
两边积分:lny=lnx+lnC=ln(Cx)(把绝对值符号省略不写了,任意常数也不是加C,而是加lnC,但这并不意味着x,y,C只能取正值,当然这个式子作为方程的通解是不行的,因为人家看到这个式子,自然会认为y只能取正值的,所以用这种简洁写法,下面的步骤是必须的,即两边同时去掉最外层的“ln”号)
所以最后的通解是:y=Cx
你看,这样写只有两步,简洁多了,并且结果是一样的。
千万记住,最后一步是不可以省略的,否则求得的解就会少了很多。
两边积分:ln|y|=ln|x|+C1(这作为方程的通解已经是对的了,不过其形式不够漂亮)
如果我们希望得到显式解,则
|y|=e^[ln|x|+C1]=e^ln|x|*e^C1
==>
y=(±e^C1)*|x|=±(±e^C1)*x
由于C1是任意实数,所以e^C1是任意正实数,±(±e^C1)则是任意的非零实数,我们把它记作C,于是得到这个方程的显式的通解:y=Cx
怪麻烦的吧?由于这种方程经常遇到,每次这样写确实感到麻烦,因此在解微分方程时,如果积分以后得到的函数里有对数函数的项,我们就使用下面的简洁写法:
两边积分:lny=lnx+lnC=ln(Cx)(把绝对值符号省略不写了,任意常数也不是加C,而是加lnC,但这并不意味着x,y,C只能取正值,当然这个式子作为方程的通解是不行的,因为人家看到这个式子,自然会认为y只能取正值的,所以用这种简洁写法,下面的步骤是必须的,即两边同时去掉最外层的“ln”号)
所以最后的通解是:y=Cx
你看,这样写只有两步,简洁多了,并且结果是一样的。
千万记住,最后一步是不可以省略的,否则求得的解就会少了很多。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你想一下其实加不加绝对值,其实问题不是很大,或者说不怎么必要,只要x能取遍所有实数,y也能同样取遍所有的,主要是因为有一个任意的常数在起到调节作用!它可以起到平衡的作用!
如果就你的第一题|y|=e^C1
|x|
如果y没有绝对值的话,那最后答案肯定就不能去掉x的绝对值的!
同样第二题,其实当你写出答案,y=ln(x+C1)+C2.时候就已经默认(x+C1)>0
加不加绝对值意义不大的!
可能觉得有些模糊,没有说清楚,仅供参考吧!
实在不行,以后做题目的时候,你还是按照现在的方法做,然后写答案的时候,看一下是否能去掉绝对值
?(只用判断如果去掉绝对值,x的取值与y的取值范围是否变化了?如果没有变化,就可以去啊,,判断很简单的,只用看它们的范围)
如果就你的第一题|y|=e^C1
|x|
如果y没有绝对值的话,那最后答案肯定就不能去掉x的绝对值的!
同样第二题,其实当你写出答案,y=ln(x+C1)+C2.时候就已经默认(x+C1)>0
加不加绝对值意义不大的!
可能觉得有些模糊,没有说清楚,仅供参考吧!
实在不行,以后做题目的时候,你还是按照现在的方法做,然后写答案的时候,看一下是否能去掉绝对值
?(只用判断如果去掉绝对值,x的取值与y的取值范围是否变化了?如果没有变化,就可以去啊,,判断很简单的,只用看它们的范围)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询