设函数f(x)在[a,b]上可导,且f(x)在a处的右导数大于0,b处的左导数小于0,证明f(x)必在(a,b)内取最大值.

 我来答
朋秀梅贝水
2020-03-16 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:2157万
展开全部
楼上讲:导数一定是恒为正数或恒为负数是不对的。
证明是这样的:
由于y=f(x)在
上连续,且(a)f(b)<0,故f(x)=0在开区间(a,b)内至少有一个实根。现若
f(x)=0在开区间(a,b)至少有两个实根x1,x2,由罗尔定理,至少存在c属于(a,b),使f'(c)=0与题设矛盾。故方程f(x)=0在开区间(a,b)内有且仅有一个实根。
羊长青焦绸
2019-12-18 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:973万
展开全部
不知道你在哪里看来的这个“定理”.在区间端点处,只能说左导或者右导存在与否,根本不能提此点可导.
因为:某点可导等价于“左右导数存在且相等”,因此在端点处左右极限是不可能同时有的,比如说a处,其左导数根本不存在,b处,右导数不存在,何来端点处可导一说?
与此类似,严格意义上我们也不能说在端点处连续!至于教材上的罗尔定理,拉格朗日定理什么的,条件中有一个在闭区间连续,这只是他们为了方便才这样表述的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式