用部分积分法求下列不定积分:∫arctan(√x)dx ,

 我来答
茹翊神谕者

2021-07-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1606万
展开全部

简单计算一下即可,详情如图所示

姒易台信然
2020-04-16 · TA获得超过1045个赞
知道小有建树答主
回答量:1719
采纳率:90%
帮助的人:8.1万
展开全部
∫arctan√x dx
令√x=t,x=t^2,dx=dt^2
所以
原式=∫arctantdt^2
=t^2*arctant-∫t^2/(1+t^2)dt
=t^2*arctant-∫(t^2+1-1)/(1+t^2)dt
=t^2*arctant-t+arctant+c
=xarctan√x-√x+arctan√x+c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式