考研高数定积分需要详细的步骤?
1个回答
展开全部
∫(0,π)x(sinx)^9dx= π/2 ∫(0,π)(sinx)^9dx
=π ∫(0,π/2)(sinx)^9dx
=π 8!!/9!!
∫(π/2,π)x(sinx)^9dx
=∫(0,π/2)(x+π/2)(sin(x+π/2))^9dx
=-∫(0,π/2)(x+π/2)(cosx)^9dx
=-∫(0,π/2)x(cosx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=∫(π/2,0)(π/2-x)(sinx)^9dx - π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)(π/2-x)(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)π/2 (sinx)^9 dx +∫(0,π/2) x(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=-π/2∫(0,π/2)(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9 dx+∫(0,π/2) x(sinx)^9 dx
=-π/2 ( 2* 8!!/9!!) +∫(0,π/2) x(sinx)^9 dx
∫(0,π/2)x(sinx)^9dx = ∫(0,π)x(sinx)^9dx - ∫(π/2,π)x(sinx)^9dx
=π 8!!/9!! -[-π/2 ( 2* 8!!/9!!) +∫(0,π/2) x(sinx)^9 dx]
=2π 8!!/9!! -∫(0,π/2) x(sinx)^9 dx
∫(0,π/2) x(sinx)^9 dx=π 8!!/9!!
=π ∫(0,π/2)(sinx)^9dx
=π 8!!/9!!
∫(π/2,π)x(sinx)^9dx
=∫(0,π/2)(x+π/2)(sin(x+π/2))^9dx
=-∫(0,π/2)(x+π/2)(cosx)^9dx
=-∫(0,π/2)x(cosx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=∫(π/2,0)(π/2-x)(sinx)^9dx - π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)(π/2-x)(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)π/2 (sinx)^9 dx +∫(0,π/2) x(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9dx
=-π/2∫(0,π/2)(sinx)^9 dx -π/2∫(0,π/2)(cosx)^9 dx+∫(0,π/2) x(sinx)^9 dx
=-π/2 ( 2* 8!!/9!!) +∫(0,π/2) x(sinx)^9 dx
∫(0,π/2)x(sinx)^9dx = ∫(0,π)x(sinx)^9dx - ∫(π/2,π)x(sinx)^9dx
=π 8!!/9!! -[-π/2 ( 2* 8!!/9!!) +∫(0,π/2) x(sinx)^9 dx]
=2π 8!!/9!! -∫(0,π/2) x(sinx)^9 dx
∫(0,π/2) x(sinx)^9 dx=π 8!!/9!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询