
求微分方程(y^2-3x^2)dy+2xydx=0 x=0,y=1时的特解
1个回答
展开全部
∵(y²-3x²)dy+2xydx=0
∴((y/x)²-3)dy+2(y/x)dx=0.(1)
设t=y/x,则dy=xdt+tdx
代入(1)得(t²-3)(xdt+tdx)+2tdx=0
==>x(t²-3)dt+(t³-t)dx=0
==>(t²-3)dt/(t-t³)=dx/x
==>[1/(1+t)-1/(1-t)-3/t]dt=dx/x
==>ln│1+t│+ln│1-t│-3ln│t│=ln│x│+ln│C│ (C是积分常数)
==>(1-t²)/t³=Cx
==>(1-(y/x)²)/(y/x)³=Cx
==>(x²-y²)/y³=C
==>x²-y²=Cy³
∵当x=0时,y=1
∴0²-1²=C*1³ ==>C=-1
故原微分方程满足x=0,y=1时的特解是x²-y²=-y³,即x²-y²+y³=0.
∴((y/x)²-3)dy+2(y/x)dx=0.(1)
设t=y/x,则dy=xdt+tdx
代入(1)得(t²-3)(xdt+tdx)+2tdx=0
==>x(t²-3)dt+(t³-t)dx=0
==>(t²-3)dt/(t-t³)=dx/x
==>[1/(1+t)-1/(1-t)-3/t]dt=dx/x
==>ln│1+t│+ln│1-t│-3ln│t│=ln│x│+ln│C│ (C是积分常数)
==>(1-t²)/t³=Cx
==>(1-(y/x)²)/(y/x)³=Cx
==>(x²-y²)/y³=C
==>x²-y²=Cy³
∵当x=0时,y=1
∴0²-1²=C*1³ ==>C=-1
故原微分方程满足x=0,y=1时的特解是x²-y²=-y³,即x²-y²+y³=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询