高数微分怎么求

 我来答
何时明月老师
高粉答主

2020-12-20 · 专注教育,擅长考研、中、高考等升学指导。
何时明月老师
采纳数:1273 获赞数:26994

向TA提问 私信TA
展开全部
(1)dx可以乘过去是因为微分的定义,以及微分的计算公式dy=f'(x)dx

(2)不定积分∫f(x)dx中的被积表达式f(x)dx,按其定义的确仅仅是形式的东西,但是由性质:

d[∫f(x)dx]=(∫f(x)dx)'dx=f(x)dx发现,它恰好就是原函数的微分,所有可以看做微分。

(3)真正有问题的是定积分中的被积表达式,以下用∫(a,b)f(x)dx表示从a到b对f(x)求定积分。

这里的f(x)dx真正是完全形式的了,与微分相去甚远,有很多书把定积分记作∫(a,b)f,根本就不写出积分变量来,因为由定积分的定义知,这个自变量是什么根本不重要,那么定积分该怎么计算呢?定积分中的换元积分法以及分部积分法又怎么来的呢?这个就是牛顿和莱布尼兹的贡献!!!

解决问题的关键:变上限积分∫(a,x)f(t)dt这个东西按定义是个定积分,但是当x变动的时候,它是个函数,而最最重要的是它的微分d[∫(a,x)f(t)dt]=f(x)dx,由此我们又一次看到定积分的被积表达式部分与微分联系了起来,这个结论是微积分部分最重要的一个结论,它的一个直接的结果就是牛顿-莱布尼兹公式。
洋依风qI

2020-12-16 · TA获得超过1082个赞
知道大有可为答主
回答量:1.4万
采纳率:90%
帮助的人:464万
展开全部
大学高数微分的话,你要分清楚微分的方式,你可以进行化简过后跟微分解题公式去求解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式